Routing Security Landscape

« kentik.

The network observability company

Doug Madory (Kentik)

Global Adoption Statistics

Two steps needed to identify and reject RPKI-Invalid BGP routes

Create ROAs to define correct origins for address space

ASes reject RPKI-invalid routes that don't match ROAs

May 1, 2023: Milestone in adoption:

 >50% of IPv4 routes in global routing table have ROAs (NIST RPKI monitor)

But RPKI ROV is ultimately about protecting traffic, so...

Beginning a couple of years ago, I started using Kentik's aggregate NetFlow to gain a deeper understanding of RPKI ROV adoption.

- Kentik has over 450 customers, almost half have opted-in to the use of their data as part of aggregate analysis.
 - Note: analysis is subject to biases of the customer set which includes (NSPs, CDNs and enterprises) and is skewed toward the US.
- Kentik's NetFlow analytics platform annotates flow records with an RPKI evaluation of route of destination IP upon intake.
 - Built to gauge how much traffic would be lost by rejecting invalids.
 - Can also be used to understand RPKI from a traffic-volume perspective.

At NANOG 84 in Austin, TX, I explored ROA creation using Kentik's aggregate NetFlow:

- **Feb 2022**: 1/3 of BGP routes had ROAs, >1/2 of traffic (bps) went to routes with ROAs
- Oct 2024: >1/2 of BGP routes
 have ROAs, <3/4 of traffic (bps) went to routes with ROAs

Propagation Reduction of RPKI-Invalids

- ROAs alone are useless if only a few networks are rejecting invalid routes.
- 2022 analysis showed propagation of RPKIinvalid routes is half or less than other types.

Stats from Aug 2022: How has this changed since?

www.kentik.com/blog/how-much-does-rpki-rov-reduce-the-propagation-of-invalid-routes/

RPKI-Invalid Propagation Declining

- RIPE NCC and Job Snijders (AS15562) announce RPKI-invalid (and RPKI valid) routes for measurement of RPKI ROV deployment.
- Invalid routes from each of these beacons all experienced an overall decline in propagation while the control routes saw increased propagation.

ROV and the Orange España outage

- Hacker was able to log into company's RIPE NCC portal using the password "ripeadmin" found in a leak of stolen credentials. Oops!
- Hacker altered Orange España's RPKI configuration, rendering many of its BGP routes RPKI-invalid.
- Outage marked the first time RPKI ROV was used as a vector for a denial-of-service.

Outage only possible due to rejections of RPKI-invalids

Regional Adoption Statistics

ROA Coverage Statistics

Beginning with Southeast Asia

- We'll use two metrics:
- "IP coverage" from RIPEstat
 - Percentage of IPv4 space covered by ROAs
- "Traffic coverage" from Kentik aggregate NetFlow
 - % of traffic (bits/sec) by RPKI-evaluation

ROA Coverage Statistics (Southeast Asia)

• Overall, ROA coverage is excellent

 Note: RIPEstat reports very low IPv4 coverage for Brunei (BN), but we see nearly all traffic to the country heading to AS10094 (UNN) which has ~100% ROA coverage.

ROA Coverage Statistics (Greater Asia)

- Too many countries to list, but here are some highlights
- Numerous APRICOT countries have high ROA coverage! (bps)
 - > 90%: MV, BD, MN, TW, LK, MO
 - > 70%: TL, IN, HK, JP, NZ, AU, PG
- Notable countries with low coverage (<5%)
 - China (2.5%), North Korea (0%) trust issues?
 - South Korea (6%)
 - RPKI-valid traffic is mostly foreign cloud providers.
 - KRNIC controls issuance of ROAs can we improve this process?

ROA Coverage Statistics (Greater Asia)

- TW has one of the highest levels of ROA coverage in the world!
 - 98.5% IP, 98.2% traffic
- Recently suffered a multi-hour outage which expired all of its ROAs.
- No disruption of traffic.
- During outage, only TW RPKI-valid routes were from foreign cloud providers.

RPKI Database Growth

• Year-over-year analysis of the RPKI database using RPKIviews.org snapshots

Based on the the ARIN, AFRINIC, APNIC, LACNIC, and RIPE NCC Trust Anchors.

	2023-12-31	2024-12-31	
Total cache size (KiB):	1,546,728	2,021,784	(+31%)
Total number of files (objects)): 309,802	415,384	(+34%)
Wall time validation run (secon	nds): 163	228	(+40응)
Publication servers (FQDNs):	63	53	(-16%)
Certification authorities:	40,511	44,935	(+11%)
Route origin authorizations:	188,345	280,692	(+49 %)
Uniq VRPs:	497,341	639,909	(+29%)
Average ROAIPAddresses per ROA	: 2.7	2.3	(-15%)
IPv4 addresses covered:	2,502,293,068	2,726,513,768	(+ 9 %)
Uniq IPv4 addresses covered: 3	1,502,281,680	1,658,281,248	(+10 응)
IPv6 addresses covered: 1	7,263 * 10^30	17,392 * 10^30	(+ 1%)
Uniq IPv6 addresses covered: 1	5,128 * 10^30	15,139 * 10^30	(+ 0응)
Uniq origin ASNs in ROAs:	40,656	47,282	(+16%)
Uniq ASPA Customer ASIDs:	56	87	(+55%)

• Year-over-year analysis of the RPKI database using RPKIviews.org snapshots

Based on the the ARIN, AFRINIC, APNIC, LACNIC, and RIPE NCC Trust Anchors.

	2023-12-31	2024-12-31	
Total cache size (KiB):	1,546,728	2,021,784	(+31%)
Total number of files (objects):	309,802	415,384	(+34%)
Wall time validation The size of	the database	growth by 31%	in 2024.
Publication servers (19945).	0.5	<u> </u>	(100)
Route origin authorizations:	188,345	280,692	(+49 응)
	497,341	639,909	(+29%)
	The numb	per of ROAs is ur	م 49%I
	50,		, 10 /0.

• Year-over-year analysis of the RPKI database using RPKIviews.org snapshots

Based on the the ARIN, AFRINIC, APNIC, LACNIC, and RIPE NCC Trust Anchors.

	2023-12-31	2024-12-31	
Wall time validation run (second	ls): 163	228	(+4 0%)
Publication servers (FQDNs):	63	53	(-16%)
Certification authorities:			(+11%)
The time it takes to load and cryptographical	IV 34	The fewer publica	ition points the better
validate grew 40%. Not yet a concern, but something to keep an eye on.	2.	Every validator or contact every pub	the planet MUST lication server.
validate grew 40%. Not yet a concern, but something to keep an eye on.	, 34 2. , 06 502, 281, 680	Every validator or contact every pub	the planet MUST lication server.
validate grew 40%. Not yet a concern, but something to keep an eye on.	,34 2. ,06 502,281,680 263 * 10^30	Every validator or contact every pub	the planet MUST lication server.
validate grew 40%. Not yet a concern, but something to keep an eye on.	,34 2. ,06 502,281,680 263 * 10^30 128 * 10^30	Every validator or contact every pub	the planet MUST lication server.
validate grew 40%. Not yet a concern, but something to keep an eye on.	, 34 2. ,06 502,281,680 263 * 10^30 128 * 10^30 40,656	Every validator or contact every pub	<pre>the planet MUST lication server. (+103) (+ 13) (+ 03) (+163)</pre>

• Year-over-year analysis of the RPKI database using RPKIviews.org snapshots

Based on the the ARIN, AFRINIC, APNIC, LACNIC, and RIPE NCC Trust Anchors.

Total cache size (KiB):	1,546,728	2,021,784	(+31 응)
Total number of files 10% mor	e unique IPv4	addresses cove	ered.
Wall time validation run (second	s): 103	220	(+40%)
		No change for	
		No change for	II VO.
	160/ mara	ACNIa in these D	
	16% more	ASINS IN LINESE R	KUAS.
IPv4 addresses covered: 2,	502,293,068	2,726,513,768	(+ 9%)
Uniq IPv4 addresses covered: 1,	502,281,680	1,658,281,248	(+10%)
IPv6 addresses covered: 17,	263 * 10^30	17,392 * 10^30	(+ 1%)
Uniq IPv6 addresses covered: 15,	128 * 10^30	15,139 * 10^30	(+ 0응)
Uniq origin ASNs in ROAs:	40,656	47,282	(+16%)
Uniq ASPA Customer ASIDs:	56	87	(+55응)

Measuring Success

Measuring Success is Challenging

- Did you know?: Routing leaks are still occurring with some regularity!
- Radar by Qrator @Qrator_Radar Sep 17 Route Leak at 2024-09-17 04/20 UTC

CAS28294 (GIGA) leaked 8336 prefixes towards CAS61832 (D63). Affected 845 ASNs in 108 countries. The leak may have been caused by a company merger.

Max propagation: 87%

Radar by Qrator @Qrator Radar - Sep 26 Route Leak at 2024-09-26 06:25 UTC

 AS25910 (INTAL-ASN) leaked 2475 prefixes towards AS12389 -(ROSTELI(COM-AS) from AS3356 (LEVEL3), AS1299 (TWELVE99) and others, creating conflicts with 213 ASNs in 59 countries.

Max propagation: 93% Duration: >30m, orgoing

Radar by Qrator @Quator,Radar - Sep 26 Route Leak at 2024-09-26 17:27 UTC

ASS3427 (TGLOBAL-NETWORKS) leaked 2515 prefixes towards 00 ASS3013 (WIXNET) from 1 AS6453 (TATA), AS37468 (ANGOLA-CABLES) and others, creating conflicts with 76 ASNs in 27 countries.

Max propagation: 85% Duration: ~13 minutes

Improvements in route hygiene are containing these leaks.

Measuring Success is Challenging

- In September, Brazil ordered X (Twitter) to be blocked.
- Some ISPs used BGP to hijack/blockhole X.
 - ...and leaked the hijacks (like Myanmar in 2021 and Russia in 2022)
- But the only hijacked X routes that appeared in public data were those without ROAs.
 - Likely explanation: RPKI-invalids were rejected.
 - No disruption of X outside of Brazil.
 - RPKI-ROV did its job and no one knew.

Conclusion

- The system is working as designed!
- Progress due to the dedicated efforts of hundreds of engineers at dozens of companies.
 - 1/2 of BGP routes have ROAs, >2/3 of traffic (bps) went to routes with ROAs
 - Propagation of RPKI-invalids continues to decline, Zayo now rejecting invalids
- RPKI ROV doesn't solve all the issues surrounding Internet routing security.
 - Only an opening salvo towards addressing the various "determined adversary" scenarios best characterized by the recent attacks against cryptocurrency services.
- Need to build off the progress made by RPKI ROV to address more difficult scenarios.

Thank you!

Doug Madory dmadory@kentik.com

@DougMadoryin/DougMadory

